1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
| class ImplicitGenerator3d(nn.Module): def __init__(self, siren, z_dim, **kwargs): super().__init__() self.z_dim = z_dim self.siren = siren(output_dim=4, z_dim=self.z_dim, input_dim=3, device=None) self.epoch = 0 self.step = 0
def set_device(self, device): self.device = device self.siren.device = device
self.generate_avg_frequencies()
def forward(self, z, img_size, fov, ray_start, ray_end, num_steps, h_stddev, v_stddev, h_mean, v_mean, hierarchical_sample, sample_dist=None, lock_view_dependence=False, **kwargs): """ Generates images from a noise vector, rendering parameters, and camera distribution. Uses the hierarchical sampling scheme described in NeRF. 从 噪声向量,渲染参数,相机分布 生成图像 """ batch_size = z.shape[0]
with torch.no_grad(): points_cam, z_vals, rays_d_cam = get_initial_rays_trig( batch_size, num_steps, resolution=(img_size, img_size), device=self.device, fov=fov, ray_start=ray_start, ray_end=ray_end)
transformed_points, z_vals, transformed_ray_directions, transformed_ray_origins, pitch, yaw = \ transform_sampled_points(points_cam, z_vals, rays_d_cam, h_stddev=h_stddev, v_stddev=v_stddev, h_mean=h_mean, v_mean=v_mean, device=self.device, mode=sample_dist)
transformed_ray_directions_expanded = torch.unsqueeze(transformed_ray_directions, -2) transformed_ray_directions_expanded = transformed_ray_directions_expanded.expand(-1, -1, num_steps, -1) transformed_ray_directions_expanded = transformed_ray_directions_expanded.reshape(batch_size, img_size*img_size*num_steps, 3) transformed_points = transformed_points.reshape(batch_size, img_size*img_size*num_steps, 3)
if lock_view_dependence: transformed_ray_directions_expanded = torch.zeros_like(transformed_ray_directions_expanded) transformed_ray_directions_expanded[..., -1] = -1
""" 输入:transformed_points [batch_size, num_rays*num_steps, 3(xyz)], z [batch_size, 256], ray_directions [batch_size, num_rays*num_steps, 3(xyz)] 输出:rgb aplha [batch_size, num_rays*num_steps, 4] """ coarse_output = self.siren(transformed_points, z, ray_directions=transformed_ray_directions_expanded) coarse_output = coarse_output.reshape(batch_size, img_size * img_size, num_steps, 4)
if hierarchical_sample: with torch.no_grad(): transformed_points = transformed_points.reshape(batch_size, img_size * img_size, num_steps, 3) _, _, weights = fancy_integration(coarse_output, z_vals, device=self.device, clamp_mode=kwargs['clamp_mode'], noise_std=kwargs['nerf_noise']) weights = weights.reshape(batch_size * img_size * img_size, num_steps) + 1e-5
z_vals = z_vals.reshape(batch_size * img_size * img_size, num_steps) z_vals_mid = 0.5 * (z_vals[: ,:-1] + z_vals[: ,1:]) z_vals = z_vals.reshape(batch_size, img_size * img_size, num_steps, 1) fine_z_vals = sample_pdf(z_vals_mid, weights[:, 1:-1], num_steps, det=False).detach()
fine_z_vals = fine_z_vals.reshape(batch_size, img_size * img_size, num_steps, 1)
fine_points = transformed_ray_origins.unsqueeze(2).contiguous() + \ transformed_ray_directions.unsqueeze(2).contiguous() * fine_z_vals.expand(-1,-1,-1,3).contiguous() fine_points = fine_points.reshape(batch_size, img_size*img_size*num_steps, 3)
if lock_view_dependence: transformed_ray_directions_expanded = torch.zeros_like(transformed_ray_directions_expanded) transformed_ray_directions_expanded[..., -1] = -1
""" 输入:fine_points [batch_size, num_rays*num_steps, 3], z [batch_size, 246], ray_directions [batch_size, num_rays*num_steps, 3] 输出:fine_output [batch_size, num_rays, nums_steps, 4](rgb aplha) """ fine_output = self.siren(fine_points, z, ray_directions=transformed_ray_directions_expanded) fine_output = fine_output.reshape(batch_size, img_size * img_size, num_steps, 4)
all_outputs = torch.cat([fine_output, coarse_output], dim = -2)
all_z_vals = torch.cat([fine_z_vals, z_vals], dim = -2) _, indices = torch.sort(all_z_vals, dim=-2)
all_z_vals = torch.gather(all_z_vals, -2, indices) all_outputs = torch.gather(all_outputs, -2, indices.expand(-1, -1, -1, 4)) else: all_outputs = coarse_output
all_z_vals_film = z_vals all_z_vals = z_vals
pixels, depth, weights = fancy_integration(all_outputs, all_z_vals, device=self.device, white_back=kwargs.get('white_back', False), last_back=kwargs.get('last_back', False), clamp_mode=kwargs['clamp_mode'], noise_std=kwargs['nerf_noise']) pixels = pixels.reshape((batch_size, img_size, img_size, 3)) pixels = pixels.permute(0, 3, 1, 2).contiguous() * 2 - 1
logging.info(f"generators forward pixels.shape: {pixels.shape}") return pixels, torch.cat([pitch, yaw], -1)
|