GNERF 源码解读(二)

生成器架构

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
GNeRF(
(nerf): NeRF(
(embedding_xyz): Embedding()
(embedding_dir): Embedding()
(xyz_encoding_1): Sequential(
(0): Linear(in_features=63, out_features=360, bias=True)
(1): ReLU(inplace=True)
)
(xyz_encoding_2): Sequential(
(0): Linear(in_features=360, out_features=360, bias=True)
(1): ReLU(inplace=True)
)
(xyz_encoding_3): Sequential(
(0): Linear(in_features=360, out_features=360, bias=True)
(1): ReLU(inplace=True)
)
(xyz_encoding_4): Sequential(
(0): Linear(in_features=360, out_features=360, bias=True)
(1): ReLU(inplace=True)
)
(xyz_encoding_5): Sequential(
(0): Linear(in_features=423, out_features=360, bias=True)
(1): ReLU(inplace=True)
)
(xyz_encoding_6): Sequential(
(0): Linear(in_features=360, out_features=360, bias=True)
(1): ReLU(inplace=True)
)
(xyz_encoding_7): Sequential(
(0): Linear(in_features=360, out_features=360, bias=True)
(1): ReLU(inplace=True)
)
(xyz_encoding_8): Sequential(
(0): Linear(in_features=360, out_features=360, bias=True)
(1): ReLU(inplace=True)
)
(xyz_encoding_final): Linear(in_features=360, out_features=360, bias=True)
(sigma): Linear(in_features=360, out_features=1, bias=True)
(rgb): Sequential(
(0): Linear(in_features=423, out_features=180, bias=True)
(1): ReLU(inplace=True)
(2): Linear(in_features=180, out_features=3, bias=True)
(3): Sigmoid()
)
)
)

辨别器架构

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
Discriminator(
(embedding_scale): Embedding()
(final): Sequential(
(0): LeakyReLU(negative_slope=0.2)
(1): Conv2d(73, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(2): LeakyReLU(negative_slope=0.2, inplace=True)
(3): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(4): LeakyReLU(negative_slope=0.2, inplace=True)
(5): Conv2d(64, 1, kernel_size=(1, 1), stride=(1, 1), bias=False)
)
(main): Sequential(
(0): Conv2d(3, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(1): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
(2): LeakyReLU(negative_slope=0.2, inplace=True)
(3): Conv2d(256, 512, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(4): InstanceNorm2d(512, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False)
(5): LeakyReLU(negative_slope=0.2, inplace=True)
(6): Conv2d(512, 64, kernel_size=(4, 4), stride=(1, 1), bias=False)
)
)

GNERF 源码解读(二)
http://seulqxq.top/posts/39622/
作者
SeulQxQ
发布于
2024年2月27日
许可协议